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Installation


Installation of dependencies

If you are using Windows, the easiest way to work with spatialist and Python in general is by using
Anaconda [https://www.anaconda.com/download]. It comes with all basic requirements of spatialist.
The more specific instructions below are intended for Linux users.


GDAL

spatialist requires GDAL version >=2.1 built with GEOS and PROJ4 as dependency as well as the GDAL Python binding.
Alternatively, one can use pygdal [https://github.com/nextgis/pygdal],
a virtualenv and setuptools friendly version of standard GDAL python bindings.

Ubuntu

Starting with release Yakkety (16.10), Ubuntu comes with GDAL >2.1.
See here [https://launchpad.net/ubuntu/yakkety/amd64/gdal-bin].
You can install it like this:

sudo apt-get install python-gdal python3-gdal gdal-bin





For older Ubuntu releases you can add the ubuntugis repository to apt prior to installation to install
version >2.1:

sudo add-apt-repository ppa:ubuntugis/ppa
sudo apt-get update





This way the required dependencies (GEOS and PROJ4 in particular) are also installed.
You can check the version by typing:

gdalinfo --version





Debian

Starting with Debian 9 (Stretch) GDAL is available in version >2.1 in the official repository.

Building from source

Alternatively, you can build GDAL and the dependencies from source. The script spatialist/install/install_deps.sh
gives specific instructions on how to do it. It is not yet intended to run this script via shell, but rather to
follow the instructions step by step.




SQLite + SpatiaLite

Windows

While sqlite3 and its Python binding are usually already installed, the spatialite extension needs to be
added. Two packages exist, libspatialite and mod_spatialite. Both can be used by spatialist.
It is strongly recommended to use Ubuntu >= 16.04 (Xenial) or Debian >=9 (Stretch),
which offer the package libsqlite3-mod-spatialite. This package is specifically intended to only serve as an
extension to sqlite3 and can be installed like this:

sudo apt-get install libsqlite3-mod-spatialite





After installation, the following can be run in Python to test the needed functionality:

import sqlite3
# setup an in-memory database
con = sqlite3.connect(':memory:')
# enable loading extensions and load spatialite
con.enable_load_extension(True)
try:
    con.load_extension('mod_spatialite.so')
except sqlite3.OperationalError:
    con.load_extension('libspatialite.so')





In case loading extensions is not permitted you might need to install the package pysqlite2.
See the script spatialist/install/install_deps.sh for instructions.
There you can also find instructions on how to install spatialite from source.
To test pysqlite2 you can import it as follows and then run the test above:

from pysqlite2 import dbapi2 as sqlite3





Installing this package is likely to cause problems with the sqlite3 library installed on the system.
Thus, it is safer to build a static sqlite3 library for it (see installation script).






Installation of spatialist

For the installation we need the Python tool pip and the version control system git. On Windows, pip is
installed together with Anaconda. Git can be installed like this:

conda install git





On Linux:

sudo apt-get install python-pip git





Once everything is set up, spatialist is ready to be installed. You can install stable releases like this:

python -m pip install spatialist





or the latest developer version like this:

sudo python -m pip install git+https://github.com/johntruckenbrodt/spatialist.git





On Windows you need to use the Anaconda Prompt and leave out sudo in the above command.
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Some general examples


in-memory vector object rasterization


Here we create a new raster data set with the same geo-information and extent as a reference data set
and burn the geometries from a shapefile into it.

In this example, the shapefile contains an attribute Site_name and one of the geometries in the shapefile has a
value of my_testsite for this attribute.

We use the expressions parameter to subset the shapefile and burn a value of 1 in the raster at all locations
where the geometry selection overlaps. Multiple expressions can be defined together with multiple burn values.

Also, burn values can be appended to an already existing raster data set. In this case, the rasterization is
performed in-memory to further use it for e.g. plotting. Alternatively, an outname can be defined to directly write
the result to disk as a GeoTiff.

See spatialist.raster.rasterize() for further reference.



>>> from spatialist import Vector, Raster
>>> from spatialist.raster import rasterize
>>> import matplotlib.pyplot as plt
>>>
>>> shapefile = 'testsites.shp'
>>> rasterfile = 'extent.tif'
>>>
>>> with Raster(rasterfile) as ras:
>>>     with Vector(shapefile) as vec:
>>>         mask = rasterize(vec, reference=ras, burn_values=1, expressions=["Site_Name='my testsite'"])
>>>         plt.imshow(mask.matrix())
>>>         plt.show()
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