

Welcome to spatialist’s documentation!

	Installation
	Installation of dependencies
	GDAL

	SQLite + SpatiaLite

	Installation of spatialist

	API Documentation
	Raster Class

	Raster Tools

	Vector Class

	Vector Tools

	General Spatial Tools

	Database Tools

	Ancillary Functions

	ENVI HDR file manipulation

	Data Exploration

	Some general examples
	in-memory vector object rasterization

Indices and tables

	Index

	Module Index

	Search Page

Installation

Installation of dependencies

If you are using Windows, the easiest way to work with spatialist and Python in general is by using
Anaconda [https://www.anaconda.com/download]. It comes with all basic requirements of spatialist.
The more specific instructions below are intended for Linux users.

GDAL

spatialist requires GDAL version >=2.1 built with GEOS and PROJ4 as dependency as well as the GDAL Python binding.
Alternatively, one can use pygdal [https://github.com/nextgis/pygdal],
a virtualenv and setuptools friendly version of standard GDAL python bindings.

Ubuntu

Starting with release Yakkety (16.10), Ubuntu comes with GDAL >2.1.
See here [https://launchpad.net/ubuntu/yakkety/amd64/gdal-bin].
You can install it like this:

sudo apt-get install python-gdal python3-gdal gdal-bin

For older Ubuntu releases you can add the ubuntugis repository to apt prior to installation to install
version >2.1:

sudo add-apt-repository ppa:ubuntugis/ppa
sudo apt-get update

This way the required dependencies (GEOS and PROJ4 in particular) are also installed.
You can check the version by typing:

gdalinfo --version

Debian

Starting with Debian 9 (Stretch) GDAL is available in version >2.1 in the official repository.

Building from source

Alternatively, you can build GDAL and the dependencies from source. The script spatialist/install/install_deps.sh
gives specific instructions on how to do it. It is not yet intended to run this script via shell, but rather to
follow the instructions step by step.

SQLite + SpatiaLite

Windows

While sqlite3 and its Python binding are usually already installed, the spatialite extension needs to be
added. Two packages exist, libspatialite and mod_spatialite. Both can be used by spatialist.
It is strongly recommended to use Ubuntu >= 16.04 (Xenial) or Debian >=9 (Stretch),
which offer the package libsqlite3-mod-spatialite. This package is specifically intended to only serve as an
extension to sqlite3 and can be installed like this:

sudo apt-get install libsqlite3-mod-spatialite

After installation, the following can be run in Python to test the needed functionality:

import sqlite3
setup an in-memory database
con = sqlite3.connect(':memory:')
enable loading extensions and load spatialite
con.enable_load_extension(True)
try:
 con.load_extension('mod_spatialite.so')
except sqlite3.OperationalError:
 con.load_extension('libspatialite.so')

In case loading extensions is not permitted you might need to install the package pysqlite2.
See the script spatialist/install/install_deps.sh for instructions.
There you can also find instructions on how to install spatialite from source.
To test pysqlite2 you can import it as follows and then run the test above:

from pysqlite2 import dbapi2 as sqlite3

Installing this package is likely to cause problems with the sqlite3 library installed on the system.
Thus, it is safer to build a static sqlite3 library for it (see installation script).

Installation of spatialist

For the installation we need the Python tool pip and the version control system git. On Windows, pip is
installed together with Anaconda. Git can be installed like this:

conda install git

On Linux:

sudo apt-get install python-pip git

Once everything is set up, spatialist is ready to be installed. You can install stable releases like this:

python -m pip install spatialist

or the latest developer version like this:

sudo python -m pip install git+https://github.com/johntruckenbrodt/spatialist.git

On Windows you need to use the Anaconda Prompt and leave out sudo in the above command.

API Documentation

Raster Class

Raster Tools

Vector Class

Vector Tools

General Spatial Tools

Database Tools

Ancillary Functions

ENVI HDR file manipulation

Data Exploration

Some general examples

in-memory vector object rasterization

Here we create a new raster data set with the same geo-information and extent as a reference data set
and burn the geometries from a shapefile into it.

In this example, the shapefile contains an attribute Site_name and one of the geometries in the shapefile has a
value of my_testsite for this attribute.

We use the expressions parameter to subset the shapefile and burn a value of 1 in the raster at all locations
where the geometry selection overlaps. Multiple expressions can be defined together with multiple burn values.

Also, burn values can be appended to an already existing raster data set. In this case, the rasterization is
performed in-memory to further use it for e.g. plotting. Alternatively, an outname can be defined to directly write
the result to disk as a GeoTiff.

See spatialist.raster.rasterize() for further reference.

>>> from spatialist import Vector, Raster
>>> from spatialist.raster import rasterize
>>> import matplotlib.pyplot as plt
>>>
>>> shapefile = 'testsites.shp'
>>> rasterfile = 'extent.tif'
>>>
>>> with Raster(rasterfile) as ras:
>>> with Vector(shapefile) as vec:
>>> mask = rasterize(vec, reference=ras, burn_values=1, expressions=["Site_Name='my testsite'"])
>>> plt.imshow(mask.matrix())
>>> plt.show()

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to spatialist’s documentation!

 		
 Installation

 		
 Installation of dependencies

 		
 GDAL

 		
 SQLite + SpatiaLite

 		
 Installation of spatialist

 		
 API Documentation

 		
 Raster Class

 		
 Raster Tools

 		
 Vector Class

 		
 Vector Tools

 		
 General Spatial Tools

 		
 Database Tools

 		
 Ancillary Functions

 		
 ENVI HDR file manipulation

 		
 Data Exploration

 		
 Some general examples

 		
 in-memory vector object rasterization

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

